29 research outputs found

    IL-17 Production from T Helper 17, Mucosal-Associated Invariant T, and γδ Cells in Tuberculosis Infection and Disease.

    Get PDF
    IL-17-producing cells have been shown to be important in the early stages of Mycobacterium tuberculosis (Mtb) infection in animal models. However, there are very little data on the role of IL-17 in human studies of tuberculosis (TB). We recruited TB patients and their highly exposed contacts who were further categorized based on results from an IFN-γ-release assay (IGRA): (1) IGRA positive (IGRA+) at recruitment (latently TB infected), (2) IGRA negative (IGRA-) at recruitment and 6 months [non-converters (NC)], and (3) IGRA- at recruitment and IGRA+ at 6 months (converters). Whole blood was stimulated with mycobacterial antigens and analyzed using T helper (Th) 17 multiplex cytokine assays. Th17, Vγ9Vδ2+, and CD161++Vα7.2+ mucosal-associated invariant T (MAIT) cells were analyzed by flow cytometry. The majority of IL-17 was produced by CD26+CD4+ Th17 cells (median 71%) followed by γδ T cells (6.4%) and MAIT cells (5.8%). TB patients had a significantly lower proportion of Th17 cells and CD4+CD161+Vα7.2+ cells producing both IL-17 and IFN-γ compared to LTBI subjects. IGRA NC had significantly lower levels of CD26-CD4+ and CD8+ MAIT cells producing IL-17 compared to IGRA C but had significantly higher levels of IL-17A, IL-17F, IL-21, and IL-23 in ESAT-6/CFP-10-stimulated supernatants compared to IGRA C. These data provide new insights into the role of IL-17 and IL-17-producing cells at three key stages of the Mtb infection spectrum

    A case of persistent human pegivirus infection in two separate pregnancies of a woman

    Get PDF
    Human pegivirus (HPgV) is best known for persistent, presumably non-pathogenic, infection and a propensity to co-infect with human immunodeficiency virus or hepatitis C virus. However, unique attributes, such as the increased risk of malignancy or immune modulation, have been recently recognized for HPgV. We have identified a unique case of a woman with high levels HPgV infection in two pregnancies, which occurred 4 years apart and without evidence of human immunodeficiency virus or hepatitis C virus infection. The second pregnancy was complicated by congenital heart disease. A high level of HPgV infection was detected in the maternal blood from different trimesters by RT-PCR and identified as HPgV type 1 genotype 2 in both pregnancies. In the second pregnancy, the decidua and intervillous tissue of the placenta were positive for HPgV by PCR but not the chorion or cord blood (from both pregnancies), suggesting no vertical transmission despite high levels of viremia. The HPgV genome sequence was remarkably conserved over the 4 years. Using VirScan, sera antibodies for HPgV were detected in the first trimester of both pregnancies. We observed the same anti-HPgV antibodies against the non-structural NS5 protein in both pregnancies, suggesting a similar non-E2 protein humoral immune response over time. To the best of our knowledge, this is the first report of persistent HPgV infection involving placental tissues with no clear indication of vertical transmission. Our results reveal a more elaborate viral-host interaction than previously reported, expand our knowledge about tropism, and opens avenues for exploring the replication sites of this virus

    At-home blood collection and stabilization in high temperature climates using home RNA

    Get PDF
    Expanding whole blood sample collection for transcriptome analysis beyond traditional phlebotomy clinics will open new frontiers for remote immune research and telemedicine. Determining the stability of RNA in blood samples exposed to high ambient temperatures (\u3e30°C) is necessary for deploying home-sampling in settings with elevated temperatures (e.g., studying physiological response to natural disasters that occur in warm locations or in the summer). Recently, we have develope

    Abundance of ACVR1B transcript is elevated during septic conditions: Perspectives obtained from a hands-on reductionist investigation

    Get PDF
    Sepsis is a complex heterogeneous condition, and the current lack of effective risk and outcome predictors hinders the improvement of its management. Using a reductionist approach leveraging publicly available transcriptomic data, we describe a knowledge gap for the role of ACVR1B (activin A receptor type 1B) in sepsis. ACVR1B, a member of the transforming growth factor-beta (TGF-beta) superfamily, was selected based on the following: 1) induction upon in vitro exposure of neutrophils from healthy subjects with the serum of septic patients (GSE49755), and 2) absence or minimal overlap between ACVR1B, sepsis, inflammation, or neutrophil in published literature. Moreover, ACVR1B expression is upregulated in septic melioidosis, a widespread cause of fatal sepsis in the tropics. Key biological concepts extracted from a series of PubMed queries established indirect links between ACVR1B and “cancer”, “TGF-beta superfamily”, “cell proliferation”, “inhibitors of activin”, and “apoptosis”. We confirmed our observations by measuring ACVR1B transcript abundance in buffy coat samples obtained from healthy individuals (n=3) exposed to septic plasma (n = 26 melioidosis sepsis cases)ex vivo. Based on our re-investigation of publicly available transcriptomic data and newly generated ex vivo data, we provide perspective on the role of ACVR1B during sepsis. Additional experiments for addressing this knowledge gap are discussed

    Organizing gene literature retrieval, profiling, and visualization training workshops for early career researchers

    Get PDF
    Developing the skills needed to effectively search and extract information from biomedical literature is essential for early-career researchers. It is, for instance, on this basis that the novelty of experimental results, and therefore publishing opportunities, can be evaluated. Given the unprecedented volume of publications in the field of biomedical research, new systematic approaches need to be devised and adopted for the retrieval and curation of literature relevant to a specific theme. Here we describe a hands-on training curriculum aimed at retrieval, profiling, and visualization of literature associated with a given topic. This curriculum was implemented in a workshop in January 2021. We provide supporting material and step-by-step implementation guidelines with the ISG15 gene literature serving as an illustrative use case. Through participation in such a workshop, trainees can learn: 1) to build and troubleshoot PubMed queries in order to retrieve the literature associated with a gene of interest; 2) to identify key concepts relevant to given themes (such as cell types, diseases, and biological processes); 3) to measure the prevalence of these concepts in the gene literature; 4) to extract key information from relevant articles, and 5) to develop a background section or summary on the basis of this information. Finally, trainees can learn to consolidate the structured information captured through this process for presentation via an interactive web application

    A modular framework for the development of targeted Covid-19 blood transcript profiling panels

    Get PDF
    Covid-19 morbidity and mortality are associated with a dysregulated immune response. Tools are needed to enhance existing immune profiling capabilities in affected patients. Here we aimed to develop an approach to support the design of targeted blood transcriptome panels for profiling the immune response to SARS-CoV-2 infection.; We designed a pool of candidates based on a pre-existing and well-characterized repertoire of blood transcriptional modules. Available Covid-19 blood transcriptome data was also used to guide this process. Further selection steps relied on expert curation. Additionally, we developed several custom web applications to support the evaluation of candidates.; As a proof of principle, we designed three targeted blood transcript panels, each with a different translational connotation: immunological relevance, therapeutic development relevance and SARS biology relevance.; Altogether the work presented here may contribute to the future expansion of immune profiling capabilities via targeted profiling of blood transcript abundance in Covid-19 patients

    Immunomodulatory effects of vitamin d supplementation in a deficient population

    Get PDF
    In addition to its canonical functions, vitamin D has been proposed to be an important mediator of the immune system. Despite ample sunshine, vitamin D deficiency is prevalent (>80%) in the Middle East, resulting in a high rate of supplementation. However, the underlying molecular mechanisms of the specific regimen prescribed and the potential factors affecting an individual’s response to vitamin D supplementation are not well characterized. Our objective is to describe the changes in the blood transcriptome and explore the potential mechanisms associated with vitamin D3 supplementation in one hundred vitamin D-deficient women who were given a weekly oral dose (50,000 IU) of vitamin D3 for three months. A high-throughput targeted PCR, composed of 264 genes representing the important blood transcriptomic fingerprints of health and disease states, was performed on pre and post-supplementation blood samples to profile the molecular response to vitamin D3. We identified 54 differentially expressed genes that were strongly modulated by vitamin D3 supplementation. Network analyses showed significant changes in the immune-related pathways such as TLR4/CD14 and IFN receptors, and catabolic processes related to NF-kB, which were subsequently confirmed by gene ontology enrichment analyses. We proposed a model for vitamin D3 response based on the expression changes of molecules involved in the receptor-mediated intra-cellular signaling pathways and the ensuing predicted effects on cytokine production. Overall, vitamin D3 has a strong effect on the immune system, G-coupled protein receptor signaling, and the ubiquitin system. We highlighted the major molecular changes and biological processes induced by vitamin D3, which will help to further investigate the effectiveness of vitamin D3 supplementation among individuals in the Middle East as well as other regions.Funding: This work was supported by National Capacity Building Program grant from Qatar University (ID# QUCP-CHS-17\18-1)

    Development of a fixed module repertoire for the analysis and interpretation of blood transcriptome data.

    Get PDF
    As the capacity for generating large-scale molecular profiling data continues to grow, the ability to extract meaningful biological knowledge from it remains a limitation. Here, we describe the development of a new fixed repertoire of transcriptional modules, BloodGen3, that is designed to serve as a stable reusable framework for the analysis and interpretation of blood transcriptome data. The construction of this repertoire is based on co-clustering patterns observed across sixteen immunological and physiological states encompassing 985 blood transcriptome profiles. Interpretation is supported by customized resources, including module-level analysis workflows, fingerprint grid plot visualizations, interactive web applications and an extensive annotation framework comprising functional profiling reports and reference transcriptional profiles. Taken together, this well-characterized and well-supported transcriptional module repertoire can be employed for the interpretation and benchmarking of blood transcriptome profiles within and across patient cohorts. Blood transcriptome fingerprints for the 16 reference cohorts can be accessed interactively via: https://drinchai.shinyapps.io/BloodGen3Module/

    Environment impacts innate immune ontogeny

    No full text

    Transcriptomic profile investigations highlight a putative role for NUDT16 in sepsis

    Get PDF
    Sepsis is an aberrant systemic inflammatory response mediated by the acute activation of the innate immune system. Neutrophils are important contributors to the innate immune response that controls the infection, but harbour the risk of collateral tissue damage such as thrombosis and organ dysfunction. A better understanding of the modulations of cellular processes in neutrophils and other blood cells during sepsis is needed and can be initiated via transcriptomic profile investigations. To that point, the growing repertoire of publicly accessible transcriptomic datasets serves as a valuable resource for discovering and/or assessing the robustness of biomarkers. We employed systematic literature mining, reductionist approach to gene expression profile and empirical in vitro work to highlight the role of a Nudix hydrolase family member, NUDT16, in sepsis. The relevance and implication of the expression of NUDT16 under septic conditions and the putative functional roles of this enzyme are discussed
    corecore